Antimicrobial activities of commercial nanoparticles against an environmental soil microbe, Pseudomonas putida KT2440
نویسندگان
چکیده
BACKGROUND The release of heavy metal-containing nanoparticles (NP) into the environment may be harmful to the efficacy of beneficial microbes that function in element cycling, pollutant degradation and plant growth. Nanoparticles of Ag, CuO and ZnO are of interest as antimicrobials against pathogenic bacteria. We demonstrate here their antimicrobial activity against the beneficial soil microbe, Pseudomonas putida KT2440. RESULTS Toxicity was detected in a KT2440 construct possessing a plasmid bearing the luxAB reporter genes. "As manufactured" preparations of nano- Ag, -CuO and -ZnO caused rapid dose-dependent loss of light output in the biosensor. Cell death accompanied loss in Lux activity with treatments by nano-Ag and -CuO, but with -ZnO the treatments were bacteriostatic rather than bactericidal. Bulk equivalents of these products showed no inhibitory activity, indicating that particle size was determinant in activity. Flow Field-Flow Fractionation (FlFFF) of an aqueous suspension of the nano-CuO and ZnO revealed a small proportion of 5 nm NP and aggregated particulates with sizes ranging between 70 nm and 300 nm; the majority portion of material was aggregated into particles larger than 300 nm in size. Thus within the commercial preparation there may be microbially active and inactive forms. CONCLUSION The "as-made" NP of Ag, CuO and ZnO have toxic effects on a beneficial soil microbe, leading to bactericidal or bacteriostatic effects depending on the NP employed. The lack of toxicity from bulk materials suggests that aggregation of the NP into larger particles, possibly by factors present in the environment may reduce their nontarget antimicrobial activity.
منابع مشابه
Enhanced tolerance to naphthalene and enhanced rhizoremediation performance for Pseudomonas putida KT2440 via the NAH7 catabolic plasmid.
In this work, we explore the potential use of the Pseudomonas putida KT2440 strain for bioremediation of naphthalene-polluted soils. Pseudomonas putida strain KT2440 thrives in naphthalene-saturated medium, establishing a complex response that activates genes coding for extrusion pumps and cellular damage repair enzymes, as well as genes involved in the oxidative stress response. The transfer o...
متن کاملPseudomonas putida KT2440 causes induced systemic resistance and changes in Arabidopsis root exudation.
Pseudomonas putida KT2440 is an efficient colonizer of the rhizosphere of plants of agronomical and basic interest. We have demonstrated that KT2440 can protect the model plant Arabidopsis thaliana against infection by the phytopathogen Pseudomonas syringae pv. tomato DC3000. P. putida extracellular haem-peroxidase (PP2561) was found to be important for competitive colonization and essential fo...
متن کاملEngineering the soil bacterium Pseudomonas putida for arsenic methylation.
Accumulation of arsenic has potential health risks through consumption of food. Here, we inserted the arsenite [As(III)] S-adenosylmethionine methyltransferase (ArsM) gene into the chromosome of Pseudomonas putida KT2440. Recombinant bacteria methylate inorganic arsenic into less toxic organoarsenicals. This has the potential for bioremediation of environmental arsenic and reducing arsenic cont...
متن کاملBenzoxazinoids in Root Exudates of Maize Attract Pseudomonas putida to the Rhizosphere
Benzoxazinoids, such as 2,4-dihydroxy-7-methoxy-2H-1,4-benzoxazin-3(4H)-one (DIMBOA), are secondary metabolites in grasses. In addition to their function in plant defence against pests and diseases above-ground, benzoxazinoids (BXs) have also been implicated in defence below-ground, where they can exert allelochemical or antimicrobial activities. We have studied the impact of BXs on the interac...
متن کاملHydroxyectoine is superior to trehalose for anhydrobiotic engineering of Pseudomonas putida KT2440.
Anhydrobiotic engineering aims to increase the level of desiccation tolerance in sensitive organisms to that observed in true anhydrobiotes. In addition to a suitable extracellular drying excipient, a key factor for anhydrobiotic engineering of gram-negative enterobacteria seems to be the generation of high intracellular concentrations of the nonreducing disaccharide trehalose, which can be ach...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of Biological Engineering
دوره 3 شماره
صفحات -
تاریخ انتشار 2009